Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: results from an experimental and modeling analysis
نویسندگان
چکیده
Ecosystem carbon dioxide, energy, and water fluxes were measured using eddy covariance in a fresh clear-cut surrounded by a mixed spruce-birch-aspen forest in the boreal zone of European Russia. Measurements were initiated in spring 2016 following timber harvest and continued for five months. The influence of surrounding forest on air flow and turbulent fluxes within the clear-cut were examined using a process-based two-dimensional (2D) hydrodynamic turbulent exchange model. The clear-cut was a source of CO2 to the atmosphere prior to onset of vegetation growth during early spring. During this period the mean daily latent (LE) and sensible (H) heat fluxes were very similar and the Bowen ratio (b = H/LE) averaged about 1.0. Daily net ecosystem exchange of CO2 (NEE) was around 0 gC m 2 d 1 following onset of vegetation growth from mid-spring through summer, while b declined to 0.6–0.7. There was strong diurnal variability in NEE, LE and H over the measurement period that was governed by solar radiation and temperature as well as the leaf area index (LAI) of regrown vegetation. Modeled vertical CO2 and H2O fluxes along a transect that crossed the clear-cut and coincided with the dominate wind direction showed that the clear-cut strongly influenced turbulent fluxes within the atmospheric surface layer. Furthermore, modeled atmospheric dynamics suggested that the clear-cut had a large influence on turbulent fluxes in the downwind forest, but little impact on the upwind side. An aggregated approach including field measurements and process-based models can be a useful approach to estimate energy, water and carbon dioxide fluxes in non-uniform forest landscapes.
منابع مشابه
Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia
Net ecosystem carbon exchange (NEE) was measured with eddy covariance method for two adjacent forests located at the southern boundary of European taiga in Russia in 1999–2004. The two spruce forests shared similar vegetation composition but differed in soil conditions. The wet spruce forest (WSF) possessed a thick peat layer (60 cm) with a high water table seasonally close to or above the soil...
متن کاملFire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems
[1] The net radiation available to drive surface-atmosphere exchange is strongly influenced by albedo and surface temperature. Tower-based microclimatic and eddy covariance measurements in typical Alaskan black spruce and tundra ecosystems before and immediately after fire indicated a 10% decrease in net radiation over the burned spruce stand but a 12% increase in net radiation over the burned ...
متن کاملSimulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5
Three years of meteorological data collected at the WLEF-TV tower were used to drive a revised version of the Simple Biosphere (SiB 2.5) Model. Physiological properties and vegetation phenology were specified from satellite imagery. Simulated fluxes of heat, moisture, and carbon were compared to eddy covariance measurements taken onsite as a means of evaluating model performance on diurnal, syn...
متن کاملDifferential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost
Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, ...
متن کاملChange in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements
Warming in northern high latitudes has changed the energy balance between terrestrial ecosystems and the atmosphere. This study evaluated changes in regional surface energy exchange in Alaska from 2000 to 2011 when substantial declines in spring snow cover due to spring warming and large-scale fire events were observed. Energy fluxes from a network of 20 eddy covariance sites were upscaled usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016